Después de las dos entradas sobre Codificacióin Geográfica (*), toca entrar de lleno en la Visualización e Integración de Google Maps en nuestro programa, que por otra parte era el objetivo inicial de esta serie de entradas. La Codificación Geográfica (obtención de Latitud y Loingitud a partir de una dirección postal) era un «escollo» a salvar en nuestro camino, hasta nuestro verdadero objetivo.
(*) Lo normal es tener en nuestros programas/aplicaciones una serie de direcciones postales o direcciones de correo que deseamos mostrar o señalar en un Mapa. Para utilizar esas direccones con la API de Google Maps necesitamos obtener las coordenadas de Latitud y Longitud apropiadas. Para ello ya vimos aquí (Codificación Geográfica – I) y aquí (Codificación Geográfica – II) cómo Google provee métodos para obtener las coordenadas de posicionamiento a partir de direcciones postales.
La idea para conseguir la integración es sencilla. Utilizar un componente TWebBrowser para mostrar una página HTML. Desde Delphi debemos «modificar» esa página para que muestre lo que nosotros deseemos.
Utilizando una sencilla página HTML con un Script, podemos visualizar el mapa correspondiente a coordenadas de Latitud y Longitud. Con un componente TWebBrowser podemos visualizar esa página dentro de una aplicación delphi.
La página en sí sólo contiene el Script para Visualizar un Mapa.
Dentro del Script vemos cómo se crea un elemento de tipo «map»:
map =new GMap2(document.getElementById("map"));
map = new GMap2(document.getElementById("map"));
Se añaden los controles que queremos visualizar en el mapa; En este caso, la selección para el tipo de mapa y control de zoom y posición grande.
// Controles del mapa
map.addControl(new GMapTypeControl());
map.addControl(new GLargeMapControl());
// Controles del mapa
map.addControl(new GMapTypeControl());
map.addControl(new GLargeMapControl());
El tipo de mapa que queremos que inicialmente aparezca (Mapa, visión por satélite o lo que Google llama híbrido).
// Tipo de mapa
map.setMapType(G_NORMAL_MAP);
// Tipo de mapa
map.setMapType(G_NORMAL_MAP);
Y por último colocamos la posición (latitud y longitud) donde queremos que el mapa salga centrado.
Pero no acaban aquí (ni mucho menos) las posibilidades de Google Maps. Una de las opciones, que dentro de lo sencillo, es muy interesante, es la inclusión de marcas señalando puntos del mapa o incluso ventanas de información no es mucho más complejo.
Para añadir una nueva marca, basta con conocer el punto exacto donde queremos situarla y utilizar un objeto GMarker para mostrarla en el mapa. En cuanto a la ventana, de información, sólo necesitamos el código HTML necesario para crearla.
En este ejemplo la ventana tiene un código sencillo (texto, imagen y link) que se almacena en una variable.
Para mostrarla basta con que utilicemos en método OpenInfoWindowHtml (cuyo nombre es bastante descriptivo, por cierto ;-D ) de la siguiente forma:
// Visualización de la mrcavar point =new GLatLng(41.381655,2.122829);var marker =new GMarker(point);
marker.openInfoWindowHtml(html);
// Visualización de la mrca
var point = new GLatLng(41.381655,2.122829);
var marker = new GMarker(point);
marker.openInfoWindowHtml(html);
Hay más opciones y basta con echarle una vistazo a la API de Google Maps para conocerlas. Además hay muchos ejemplos de utilización que pueden servir para aclarar los conceptos y para ver más cláramente cómo se utilizan los diferentes elementos.
Todo lo visto hasta aquí, está puesto en práctica en un ejemplo Delphi.
Podéis descargar el código completo (incluye EXE -comprimido UPX-) desde aquí:
<Descargar Ejemplo>
Y aquí acabamos esta entrada, que no será la última. Me dejo para una segunda parte, algunos detalles finales, como interactuar con el mapa y obtener datos de él y fusionar los dos conceptos vistos hasta ahora.
Embarcadero MVP.
Analista y Programador de Sistemas Informáticos.
Estudios de Informática (Ingeniería Técnica Superior) en la UPC (Universidad Politécnica de Barcelona).
Llevo utilizando Delphi desde su versión 3. Especialista en diseño de componentes, Bases de Datos, Frameworks de Persistencia, Integración Continua, Desarrollo móvil,…
Si habéis revisado el ejemplo sencillo que vimos en la primera entrada, os habréis fijado que hay un parámetro al final de la dirección del que no hemos hablado. Se trata del formato de salida para los datos. Los formatos que acepta el API de Google Maps son los siguientes:
XML: Formato extendido en XML/KLM.
KLM: Formato extendido en KL; Se diferencia del anterior en los tipos MIME.
JSON: La salida de este formato se guarda en formato de objeto JSON (Javascript Object Notation).
CSV: Formato comprimido separado por comas (el que se utilizó en el ejemplo).
Para utilizar un formato diferente, basta con añadir al final de la línea de petición el formato deseado:
Retomando el tema inicial, vamos a utilizar uno de los formatos extendidos para obtener más información de una dirección dada, además de las coordenadas de Latitud y Longitud.
Si realizamos una petición HTTP utilizando el formato json obtenemos una respuesta como esta por parte del servidor:
Utilizando un sencillo «parser» con este resultado podemos extraer la información para poder utilizarla en nuestros programas.
El ejempo que se ve en la imagen puede descargarse desde aquí.
He creado además una clase derivada de TThread que permite acceder a la imagen. Me ha parecido que en futuros usos me va a ser más útil así, aunque realmente todavía no la he probado en un entorno «multithread».
Y aun podemos extraer más, ya que si la dirección es ambigua (pero correcta), google puede devolver más de un resultado. De esta forma, con una dirección tipo:
Obtendremos por parte de Google la lista de direcciones correcta que pueden corresponder a esta calle. Cada una de ellas presenta la estructura mostrada anteriormente variando el identificador (id):
"Placemark": [ {
"id": "p1",
...
"id": "p2",
...
"Placemark": [ {
"id": "p1",
...
"id": "p2",
...
Sucesivamente para las distintas direcciones correctas y posibles para esa combinación: Alava, Burgos, Ciudad Real, Cuenca,…
A partir de aquí, no costaría mucho para modificar el ejemplo anterior de forma que se puedan extraer y mostrar los datos, no sólo de la primera dirección, sino de todas las devueltas en la petición.
Hasta aquí estos dos artículos (I y II), que sirven a modo de introducción y prefacio del próximo que estoy preparando.
Está claro, que la idea final y el objetivo que persigo es poder integrar en un programa Delphi las características de Google Maps. El problema actual es, que en nuestras Base de Datos/programas normalmente no tenemos codificadas nuestras direcciones con Latitud/Longitud, así aque para llegar a nueastro objetivo antes tenemos que conseguir estos dos parámetros. Ahí es donde nos és útil el concepto de «Codificación geográfica».
Una vez que tenemos Latitud y Longitud para nuestra dirección, ya podemos avanzar un paso más…
Embarcadero MVP.
Analista y Programador de Sistemas Informáticos.
Estudios de Informática (Ingeniería Técnica Superior) en la UPC (Universidad Politécnica de Barcelona).
Llevo utilizando Delphi desde su versión 3. Especialista en diseño de componentes, Bases de Datos, Frameworks de Persistencia, Integración Continua, Desarrollo móvil,…
Se conoce como Codificación Geográfica, al proceso o sistema de transformar una dirección «o similar» en coordenadas geográficas de Longitud y Latitud, para posteriormente ser utilizadas en sistemas de posicionamiento (por ejemplo).
El API de Google incluye este servicio, que es el que se utiliza cuando buscamos una dirección desde Google Maps.
Normalmente este acceso se hace desde una página web con peticiones HTTP; Lo que vamos a ver es cómo integrar este servicio en un programa Delphi.
Un poco más arriba he comentado que la codificación geográfica se basa en dar una entrada (dirección) para obtener unas coordenadas. También he añadido el «similar», puesto que en el caso de Google Maps, podemos dar como entrada otras cosas que expresamente no son una dirección.
Así, podemos utilizar como dirección:
08901,Spain
c/Balmes,214,Barcelona,Spain
Sevilla,Spain
Alhambra,Granada,Spain
…
Para hacer una prueba de lo que podemos obtener, basta con utilizar un componente TidHTTP de las Indy para realizar la petición. Coloca un componente TidHTTP en un formulario y un botón con el siguiente código:
procedure TForm1.btn1Click(Sender:TObject);const
STR_WEB ='http://maps.google.com/maps/geo?q=';
STR_OUT ='&output=csv';// formato de salidavar
Stream: TStringStream;
Str, res:string;begin// ini
Stream := TStringStream.Create('');// proteccion para liberartry
Str := STR_WEB + edt1.Text+ STR_OUT;
idhttp2.Get(Str, Stream);
edt2.Text:= Stream.DataString;finallyFreeAndNil(Stream);end;end;
procedure TForm1.btn1Click(Sender: TObject);
const
STR_WEB = 'http://maps.google.com/maps/geo?q=';
STR_OUT = '&output=csv'; // formato de salida
var
Stream: TStringStream;
Str, res:string;
begin
// ini
Stream := TStringStream.Create('');
// proteccion para liberar
try
Str := STR_WEB + edt1.Text + STR_OUT;
idhttp2.Get(Str, Stream);
edt2.Text := Stream.DataString;
finally
FreeAndNil(Stream);
end;
end;
Una imagen de lo que obtenemos una vez realizada la petición es la siguiente:
Se puede descargar el código completo de este ejemplo desde aquí.
Y lo que obtenemos como respuesta en este caso es:
200,8,41.3979638,2.1515206
Los dos últimos parámetros son los que buscabamos y nos indican las coordenadas de ese punto (latitud y longitud).
Para comprobar que so correctas, basta con ir a la web de Google Maps, copiar estas dos coordenadas en el cuadro de búsqueda y pulsar sobre el botón de <Buscar en el Mapa>.
A parte de esto, Google Maps nos devuelve, en este caso, dos números más; El primero corresponde al un «código de Estado» o «código de retorno» de la consulta que hemos realizado; En él se devuelve información por parte del servidor. Y el segundo es lo que se conoce como «Accuracy» o «Exactitud», que corresponde justamente a eso; Al nivel de exactitud que Google asigna a la respuesta, segun la dirección que le hemos dado.
El código de retorno, en este caso, es un 200, que corresponde a la constante «G_GEO_SUCCESS» (consulta correcta).
El nivel de exactitud, en este caso, es un 8 (máxima precisión).
Los niveles de exactitud con lo que trabaja Google Maps son los siguientes:
0: Ubicación desconocida.
1: Precisión a nivel de país.
2: Precisión a nivel de región.
3: Precisión a nivel de subregión.
4: Precisión a nivel de ciudad o pueblo.
5: Precisión a nivel de código postal.
6: Precisión a nivel de calle.
7: Precisión a nivel de intersección.
8: Precisión a nivel de dirección.
Así en el ejemplo que hemos visto antes obteníamos una Exactitud de 8 (a nivel de dirección), mientras que si íntroducimos una dirección del tipo;
Embarcadero MVP.
Analista y Programador de Sistemas Informáticos.
Estudios de Informática (Ingeniería Técnica Superior) en la UPC (Universidad Politécnica de Barcelona).
Llevo utilizando Delphi desde su versión 3. Especialista en diseño de componentes, Bases de Datos, Frameworks de Persistencia, Integración Continua, Desarrollo móvil,…
¡¡Bueno, ya estamos de vuelta!!
Después de unos días con poblemas en el servidor y para restaurar copias de seguridad, parece que todo está correcto.
Tal vez, al restaurar las copias se haya perdido algun enlace/adjunto/…
Si detectáis alguno de estos problemas, os pediría que me lo hiciérais saber, por favor.
Sea con un comentario en esta entrada o vía mail.
Gracias y un saludo.
P.D: Como compensación (;-D) estos días he estado peleándome con Google Maps, GeoPosicionamiento y las API’s de GeoCode de Google. Cuando tenga algo «maquetado» prometo pulicar sobre el tema.
Embarcadero MVP.
Analista y Programador de Sistemas Informáticos.
Estudios de Informática (Ingeniería Técnica Superior) en la UPC (Universidad Politécnica de Barcelona).
Llevo utilizando Delphi desde su versión 3. Especialista en diseño de componentes, Bases de Datos, Frameworks de Persistencia, Integración Continua, Desarrollo móvil,…
Embarcadero MVP.
Analista y Programador de Sistemas Informáticos.
Estudios de Informática (Ingeniería Técnica Superior) en la UPC (Universidad Politécnica de Barcelona).
Llevo utilizando Delphi desde su versión 3. Especialista en diseño de componentes, Bases de Datos, Frameworks de Persistencia, Integración Continua, Desarrollo móvil,…
Hace unos días nos encontramos con el problema (no muy grande ;-D ) de añadir a una aplicación delphi existente la posibilidad de incluir una imagen seleccionada por el usuario. A priori la imagen era un JPG, de la cual se debía crear una miniatura (thumbnail) a unas dimensiones determinadas (180 x 115) y ambas debían subir a un directorio determinado. Ningun problema. Aquí mismo había un par de procedimientos de Domingo Seoane para redimensdionar una imagen.
En concreto modificando un poco el procedimiento Proporcional conseguí lo que necesitaba. Que si la imagen original no era exactamente de las mismas proporciones que la que necesitaba (miniatura) esta rellenara con un color «neutro» (en este caso el blanco) los bordes laterales.
// Esta otra mantiene la relacion entre alto y anchoprocedure Proporcional(Imagen: TGraphic; Ancho, Alto:Integer);var
Bitmap: TBitmap;
Rect:TRect;begin
Bitmap:= TBitmap.Create;try
Bitmap.Width:= Ancho;
Bitmap.Height:= Alto;/// Calculos para que quede proporcionalif(Ancho/Imagen.Width) <(Alto/Imagen.Height)thenbegin
Alto:=Trunc((Ancho*Imagen.Height)/Imagen.Width);endelsebegin
Ancho:=Trunc((Imagen.Width*Alto)/Imagen.Height);end;// posición nueva// Hay que centarla para que queden márgenes iguales a ambos lados
Rect.Left:=((Bitmap.Width- Ancho)div2);
Rect.Top:=((Bitmap.Height- Alto)div2);
Rect.Right:= Rect.Left+ Ancho;
Rect.Bottom:= Rect.Top+ Alto;// Color neutro para márgenes
Bitmap.Canvas.Brush.Color:= clRed;// copiar
Bitmap.Canvas.FillRect(Bitmap.Canvas.ClipRect);
Bitmap.Canvas.StretchDraw(Rect,Imagen);
Imagen.Assign(Bitmap);finally
Bitmap.Free;end;end;
// Esta otra mantiene la relacion entre alto y ancho
procedure Proporcional(Imagen: TGraphic; Ancho, Alto: Integer);
var
Bitmap: TBitmap;
Rect:TRect;
begin
Bitmap:= TBitmap.Create;
try
Bitmap.Width:= Ancho;
Bitmap.Height:= Alto;
/// Calculos para que quede proporcional
if (Ancho/Imagen.Width) < (Alto/Imagen.Height) then begin
Alto:= Trunc((Ancho*Imagen.Height)/Imagen.Width);
end
else begin
Ancho:= Trunc((Imagen.Width*Alto)/Imagen.Height);
end;
// posición nueva
// Hay que centarla para que queden márgenes iguales a ambos lados
Rect.Left := ((Bitmap.Width - Ancho) div 2);
Rect.Top := ((Bitmap.Height - Alto) div 2);
Rect.Right:= Rect.Left + Ancho;
Rect.Bottom := Rect.Top + Alto;
// Color neutro para márgenes
Bitmap.Canvas.Brush.Color := clRed;
// copiar
Bitmap.Canvas.FillRect(Bitmap.Canvas.ClipRect);
Bitmap.Canvas.StretchDraw(Rect,Imagen);
Imagen.Assign(Bitmap);
finally
Bitmap.Free;
end;
end;
Hice un par de pruebas con imágenes y el resultado no fue exactamente lo que yo esperaba. El procedimiento era correcto, y funcionaba bien, pero las imagenes en minuatura presentaban Aliasing. Y siendo las miniaturas bastante pequeñas el efecto se notaba bastante.
Ampliando un poco la imagen y comparándola con una generada con cualquier programa sencillo de retoque fotográfico se apreciaba bastante la diferencia entre ambas.
Esto es lo que se conoce como aliasing. Se pueden encontrar múltiples definiciones y explicaciones de este problema en Internet (wiki), así que no explicaré aquí de que se trata.
APLICAR ANTIALIASING
La teoría dice que esto se soluciona aplicando algoritmos de altializasing, así me he puesto a hacer unas pruebas a ver qué resultado obtenía.Mi idea es modificar el color de cada uno de los pixels de la imagen teniendo en cuenta en color de los pixels que hay a su alrededor.
Qué pixels seleccionemos para ello y cuantos (distancia) determinará que el resultado sea más o menos satisfactorio, pero también afectará al tiempo de cálculo. Por lo que he leído esto es lo que se conoce como Supersampling/Multisampling.
Un ejemplo de diferentes selecciones de pixels se puede ver en la imagen siguiente:
En cada uno de estos casos se variará el color del pixel central teniendo en cuenta los colores de los pixels que hay a su alrededor.
A partir de aquí me he propuesto hacer algunas pruebas (sencillas) para comprobar si en los resultados se notaban cambios a simple vista.
PRUEBAS DE ALGORITMOS
Para los ejemplos he realizado una imagen sencilla, con varias líneas inclinadas, donde se aprecian bastantes «dientes de sierra» y algunas circunferencias. La imagen inicial es la que se ve en la figura siguiente con un tamaño inicial de 457 x 273 pixels.
La idea es reducir el tamaño de esa imagen hasta la mitad (más o menos) y a una cuarta parte aplicando antes un algoritmo de antialiasing sencillo escogiendo diferentes puntos para modificar el color de los pixels.
Para la reducción de tamaño, he utilizado un procedimiento estandard para reducir el tamaño de imágenes BPL utilizando (StretchDraw), pero en este caso, antes de hacer la reducción he probado a aplicar los algoritmos de AntiAliasing.
// Esta cambia el alto y ancho, estirando la imagen si es necesarioprocedure Redimensionar(Imagen:TBitmap; Ancho, Alto:Integer);var
Bitmap: TBitmap;begin
Bitmap:= TBitmap.Create;// Aplicamos antialiasing
Antialiasing(Imagen, Bitmap);
Imagen.Assign(Bitmap);// reducirtry
Bitmap.Width:= Ancho;
Bitmap.Height:= Alto;
Bitmap.Canvas.StretchDraw(Bitmap.Canvas.ClipRect, Imagen);
Imagen.Assign(Bitmap);finally
Bitmap.Free;end;end;
// Esta cambia el alto y ancho, estirando la imagen si es necesario
procedure Redimensionar(Imagen:TBitmap; Ancho, Alto: Integer);
var
Bitmap: TBitmap;
begin
Bitmap:= TBitmap.Create;
// Aplicamos antialiasing
Antialiasing(Imagen, Bitmap);
Imagen.Assign(Bitmap);
// reducir
try
Bitmap.Width:= Ancho;
Bitmap.Height:= Alto;
Bitmap.Canvas.StretchDraw(Bitmap.Canvas.ClipRect, Imagen);
Imagen.Assign(Bitmap);
finally
Bitmap.Free;
end;
end;
Para modificar el color lo que he probado es a sumar los colores de los puntos escogidos al del pixel actual y luego hacer la media para obtener un color resultante; Así por ejemplo, para calcular el nuevo color de un pixel teniendo en cuenta el pixel superior y el inferior de la misma columna, utilizo un código como este:
1
2
3
4
5
6
// R1 es el componente Red del pixel actual y R2 y R3 los del sup. e inferior.
R1:=Round(R1 + R2 + R3 )div3;
G1:=Round(G1 + G2 + R3 )div3;
B1:=Round(B1 + B2 + b3 )div3;// color resultante
Result := RGB(R1,G1,B1);
// R1 es el componente Red del pixel actual y R2 y R3 los del sup. e inferior.
R1:=Round(R1 + R2 + R3 ) div 3;
G1:=Round(G1 + G2 + R3 ) div 3;
B1:=Round(B1 + B2 + b3 ) div 3;
// color resultante
Result := RGB(R1,G1,B1);
Lo que he hecho en las pruebas es aplicar a la imagen, esta mismo procedimiento, pero teniendo en cuenta diferentes selecciones de puntos.
Seleccionando 2 puntos; Superior e inferior.
Seleccionando 4 puntos; Superior, inferior, izquierda y derecha.
Seleccionando 8 puntos. Los 8 puntos que hay alrededor del pixels actual.
Seleccionando 8 puntos y aplicando ponderación al actual. Utilizar los 8 pixels que hay alrededor del actual, pero aplicando más peso (más valor) al pixels actual (a su color) que a los del resto. En mi caso el pisel actual tiene un peso de 4, mientras que el resto queda con un pero 1.
En un primer ejemplo he aplicado los dos primeros (2 y 4 pixels), pensando que no habría grandes cambios y la verdad es qe me ha sorprendido, ya que tomando tan sólo 2 puntos ya se notan algunos cambios y tomando 4 las dioferencias ya son bastante apreciables.
El resultado obtenido por este ejemplo es el siguiente:
La imagen superior es el original (redimensionado tal como lo hace delphi), y las dos inferiores son a las que se les ha aplicado el procedimiento de Antialiasing antes de redimensionarlas. En una escogiendo 2 los pixels laterales y en la otra los 4 pixels que rodean al del cálculo. Superior, inferior, izquierdo y derecho.
Como se puede ver, con dos pixels únicamente, ya hay zonas (1, 3 y 5) donde se aprecian diferencias. Seguramente en estas más que en otras porque la selección de pixels no es homogénea (de ahí que en las líneas horizontales se aprecie más mejora).
Cuando se aplica el algoritmo teniendo en cuenta los 4 pixels de alrededor, se aprecia (2, 3, 4 y 5) ya bastantes diferencias.
En el segundo ejemplo he aplicado los 4 casos comentados antes.
El resultado de este segundo ejemplo es el siguiente:
En este caso entre los dos últimos no se aprecia diferencia visible, pero sí entre escoger 4 puntos y 8 puntos. Ver los puntos marcados como 1 y 3.
Dado que no se aprecian grandes diferencias entre los dos últimos, he integrado en un último ejemplo el redimensionado y el procedimiento de Antialiasing, de forma que este segundo se realice de forma automática.
Aunque el ejemplo que se ha desarrallo aquí y el procedimiento parece que funcionan de manera aceptable, hay que tener en cuenta otros factores a la hora de realizar un algoritmo más completo.
En nuestro caso la distancia de pixel utilizada (muestreo) es una distancia 1; es decir, hemos seleccionado los pixels que hay más cercanos al que vamos a modificar. Podemos seleccionar pixels de distancias mayores (2 y 3); De esta forma el resultado puede ser más correcto, aunque esto también tiene que ver con el porcentaje de reducción del tamaño.
No es lo mismo reducir una imagen a la mitad de su tamaño, que al 10% del tamaño original. Segun el caso el resultado puede ser mejor o peor si seleccionamos pixels a distancias 1,2 y 3 del pixels a calcular.
type
TRGBTripleArray =array[0..32767]of TRGBTriple;
PRGBTripleArray =^TRGBTripleArray;...// Esta cambia el alto y ancho, estirando la imagen si es necesarioprocedure Redimensionar(Imagen:TBitmap; Ancho, Alto:Integer);var
Bitmap: TBitmap;//····························································// Procedimiento de Antialiasing con Distancia=1procedure Antialiasing(bmp1, bmp2:TBitmap);var
r1,g1,b1:Integer;
Y, X, j:integer;
SL1, SL2, SL3: PRGBTripleArray;begin// Tamaño del bitmap destino
bmp2.Height:= bmp1.Height;
bmp2.Width:= bmp1.Width;// SCANLINE
SL1 := bmp1.ScanLine[0];
SL2 := bmp1.ScanLine[1];
SL3 := bmp1.ScanLine[2];// reorrido para todos los pixelsfor Y :=1to(bmp1.Height-2)dobeginfor X :=1to(bmp1.Width-2)dobegin
R1 :=0; G1 :=0; B1 :=0;// los 9 pixels a tener en cuentafor j :=-1to1dobegin// FIla anterior
R1 := R1 + SL1[X+j].rgbtRed+ SL2[X+j].rgbtRed+ SL3[X+j].rgbtRed;
G1 := G1 + SL1[X+j].rgbtGreen+ SL2[X+j].rgbtGreen+ SL3[X+j].rgbtGreen;
B1 := B1 + SL1[X+j].rgbtBlue+ SL2[X+j].rgbtBlue+ SL3[X+j].rgbtBlue;end;// Nuevo color
R1:=Round(R1 div9);
G1:=Round(G1 div9);
B1:=Round(B1 div9);// Asignar el nuevo
bmp2.Canvas.Pixels[X, Y]:= RGB(R1,G1,B1);end;// Siguientes...
SL1 := SL2;
SL2 := SL3;
SL3 := bmp1.ScanLine[Y+1];end;end;//···························································· begin
Bitmap:= TBitmap.Create;// Aplicamos antialiasing
Antialiasing(Imagen, Bitmap);
Imagen.Assign(Bitmap);// reducirtry
Bitmap.Width:= Ancho;
Bitmap.Height:= Alto;
Bitmap.Canvas.StretchDraw(Bitmap.Canvas.ClipRect, Imagen);
Imagen.Assign(Bitmap);finally
Bitmap.Free;end;end;
type
TRGBTripleArray = array[0..32767] of TRGBTriple;
PRGBTripleArray = ^TRGBTripleArray;
...
// Esta cambia el alto y ancho, estirando la imagen si es necesario
procedure Redimensionar(Imagen:TBitmap; Ancho, Alto: Integer);
var
Bitmap: TBitmap;
//····························································
// Procedimiento de Antialiasing con Distancia=1
procedure Antialiasing(bmp1, bmp2:TBitmap);
var
r1,g1,b1:Integer;
Y, X, j:integer;
SL1, SL2, SL3: PRGBTripleArray;
begin
// Tamaño del bitmap destino
bmp2.Height := bmp1.Height;
bmp2.Width := bmp1.Width;
// SCANLINE
SL1 := bmp1.ScanLine[0];
SL2 := bmp1.ScanLine[1];
SL3 := bmp1.ScanLine[2];
// reorrido para todos los pixels
for Y := 1 to (bmp1.Height - 2) do begin
for X := 1 to (bmp1.Width - 2) do begin
R1 := 0; G1 := 0; B1 := 0;
// los 9 pixels a tener en cuenta
for j := -1 to 1 do begin
// FIla anterior
R1 := R1 + SL1[X+j].rgbtRed + SL2[X+j].rgbtRed + SL3[X+j].rgbtRed;
G1 := G1 + SL1[X+j].rgbtGreen + SL2[X+j].rgbtGreen + SL3[X+j].rgbtGreen;
B1 := B1 + SL1[X+j].rgbtBlue + SL2[X+j].rgbtBlue + SL3[X+j].rgbtBlue;
end;
// Nuevo color
R1:=Round(R1 div 9);
G1:=Round(G1 div 9);
B1:=Round(B1 div 9);
// Asignar el nuevo
bmp2.Canvas.Pixels[X, Y] := RGB(R1,G1,B1);
end;
// Siguientes...
SL1 := SL2;
SL2 := SL3;
SL3 := bmp1.ScanLine[Y+1];
end;
end;
//····························································
begin
Bitmap:= TBitmap.Create;
// Aplicamos antialiasing
Antialiasing(Imagen, Bitmap);
Imagen.Assign(Bitmap);
// reducir
try
Bitmap.Width:= Ancho;
Bitmap.Height:= Alto;
Bitmap.Canvas.StretchDraw(Bitmap.Canvas.ClipRect, Imagen);
Imagen.Assign(Bitmap);
finally
Bitmap.Free;
end;
end;
Embarcadero MVP.
Analista y Programador de Sistemas Informáticos.
Estudios de Informática (Ingeniería Técnica Superior) en la UPC (Universidad Politécnica de Barcelona).
Llevo utilizando Delphi desde su versión 3. Especialista en diseño de componentes, Bases de Datos, Frameworks de Persistencia, Integración Continua, Desarrollo móvil,…
El componente TLogDisk sirve para facilitar el trabajo a un programador que necesite añadir un Log a sus programas. Basta con «soltar» el componente en un formulario del programa y activarlo.
Automáticamente el componente crea el fichero de Log, almacena datos de la aplicación (cabecera) y ofrece al programador métodos/rutinas para añadir datos de diferentes tipos al Log.
Algunas propiedades con las que cuenta el componente:
FileNameFormat: Permite que el componente cree el fichero de los utilizando diferentes formatos en el nombre.
FileSavePath: Permite definir la ubicación donde el componente guardará el fichero de log (mismo directorio de la aplicación o directorio de Logs).
LogWithTime: Activando esta propiedad el componente añade una marca de tiempo a los diferentes apuntes del Log.
MaxLogFiles: Controla el número máximo de ficheros de Log que se mantienen en el directorio de Logs. «O» para un número limitado; Con cualquier otro valor el componente se encarga de borrar los ficheros de Log más antiguos.
El código para añadir elementos al Log.
LogDisk.Log('Grabado el fichero: ', FileSaveAs1.Dialog.FileName);
LogDisk.Log('Grabado el fichero: ', FileSaveAs1.Dialog.FileName);
Embarcadero MVP.
Analista y Programador de Sistemas Informáticos.
Estudios de Informática (Ingeniería Técnica Superior) en la UPC (Universidad Politécnica de Barcelona).
Llevo utilizando Delphi desde su versión 3. Especialista en diseño de componentes, Bases de Datos, Frameworks de Persistencia, Integración Continua, Desarrollo móvil,…
Permite seleccionar componentes visuales (en Runtime) que haya en un form de forma visual como se hace con las imágenes en los programas de diseño o con los controles en el IDE de Delphi.
Además se pueden mover y redimensionar los controles seleccionados. Basta con soltar el control en el formulario, asignarle el control que se desea seleccionar/mover/redimensionar y activarlo.
Embarcadero MVP.
Analista y Programador de Sistemas Informáticos.
Estudios de Informática (Ingeniería Técnica Superior) en la UPC (Universidad Politécnica de Barcelona).
Llevo utilizando Delphi desde su versión 3. Especialista en diseño de componentes, Bases de Datos, Frameworks de Persistencia, Integración Continua, Desarrollo móvil,…
Este componente permite detectar en la aplicación donde se utiliza la inactividad de teclado y de ratón pasado un determinado tiempo (de forma similar a cómo se activa el salvapantallas del sistema).
El tiempo que se quiere detectar de inactividad es configurable por el usuario en minutos y segundos. Basta con activar el componente, configurar el tiempo de inactividad; Pasado este tiempo de inactividad «saltará» un evento de aviso.
Embarcadero MVP.
Analista y Programador de Sistemas Informáticos.
Estudios de Informática (Ingeniería Técnica Superior) en la UPC (Universidad Politécnica de Barcelona).
Llevo utilizando Delphi desde su versión 3. Especialista en diseño de componentes, Bases de Datos, Frameworks de Persistencia, Integración Continua, Desarrollo móvil,…
Permite modificar algunos aspectos en la visualización de un Grid estandard.
No deriva del DBGrid, si no que funciona como complemento al componente estandard de Delphi. (En construcción…)
La propiedad Flat permite modificar el aspecto del DBGrid.
Implementa métodos para mejorar el pintado en el Grid de las celdas de tipo Booleano y Memo;
Sustituye el texto por un checkbox y (MEMO) que aparece en los campos Memo por el texto del campo.
Además provee eventos para modificar colores del DBGrid:
OnPaintCell: Para pintar xeldas de un determinado color.
OnPaintCellExt: BIS del anterior con más parámetros.
OnPaintColumn: Permite pintar una columna de color.
OnPaintRow: Permite pintar una file de color.
OnPaintCellImage: Permite pintar imágenes en una celda.
OnChangeTitleCell: Modificar las celdas de título.
Embarcadero MVP.
Analista y Programador de Sistemas Informáticos.
Estudios de Informática (Ingeniería Técnica Superior) en la UPC (Universidad Politécnica de Barcelona).
Llevo utilizando Delphi desde su versión 3. Especialista en diseño de componentes, Bases de Datos, Frameworks de Persistencia, Integración Continua, Desarrollo móvil,…